Available for Licensing

Conversion of Methane to Hydrogen and Synthesis Gas Using Bimetalic Oxygen Carriers

Opportunity:

Researchers at the U.S. Department of Energy's National Energy Technology Laboratory (NETL) have developed a novel method for the production of hydrogen (H_2 I and synthesis gas (syngas). The process utilizes the chemical looping combustion (CLC) of methane to produce the heat necessary for either methane decomposition to produce pure H_2 or methane reforming to produce syngas. A CuO-Fe $_2$ 0 $_3$ mixed oxide is used both as an oxygen carrier in the CLC process and as a catalyst (in its reduced state) to produce pure H_2 or synthesis gas via methane decomposition/reforming. This technology is available for licensing and/or further collaborative research.

Overview:

Hydrogen and syngas have many valuable commercial applications including serving as fuels or fuel intermediates. Although both $\rm H_2$ and syngas can be readily produced from methane, the processes typically generate large quantities of $\rm CO_{2'}$ require addit ional costly processing steps and/or are energyintensive.

Thus, there exists a need for efficient and cost-effective means of producing valuable H_2 and syngas from methane that also have minimal environmental impact. To this end, NETL researchers have combined Chemica I Looping Combustion (CLC) with methane decomposit ion and reformation to produce H_2 and syngas, respectively. The CLC uses Cu0-Fe $_2$ 0 $_3$ 0 oxide as an oxygen carrier to t ransport oxygen from air to fuel, avoiding direct contact between fuel and air. Unlike conventional

Principal Investigator: Ranjani Siriwardane

combustion, CLC produces a high purity, sequestration-ready $\mathrm{CO_2}$ stream- undiluted by nitrogen ($\mathrm{N_2}$) without expending any major energy required for the separation of $\mathrm{CO_2}$ • This results in a significant cost-savings. Importantly, the CLC process also produces heat that can be used to drive subsequent endothermic chemical reactions such as the conversion of methane into $\mathrm{H_2}$ or syngas. Coupling the CLC of methane with

(continued)

methane decomposition and reformation, takes advantage of not only the exothermic nature of CLC, but also the fact that in CLC the bimetallic oxygen carrier cycles between oxidized and reduced states. Significantly, in its reduced state, the Cu0-Fe $_2$ 0 $_3$ oxide can function as a catalyst in the methane decomposition and reformation reactions to produce H $_3$ and syngas, respectively.

A BIAS pelletization method, involving extrusion of a wet paste into pellet shapes, well suited for semi-continuous scale-up has been developed. Pelletization is achieved via the novel combination of inexpensive, readilyavailable fly ash (FA) as a strength additive and low-cost, hydrophobic poly(chloroprene) (PO as a binder. The combination of FA strength additive and PC imparts both high strength and flexibility.

Significance:

NETL's coupled CLC-methane decomposition/reformation process:

- Produces pure H₂ and syngas and from methane with no CO₂ emissions
- Generates sequestration-ready CO₂ via the CLC process which should contribute considerable cost savings
- Employs a CuO-Fe₂O₃ CLC oxygen carrier that is highly reactive, stable even after multiple cycles, relatively low cost and environmentally benign
- Uses the reduced oxygen carrier as the catalyst for methane decomposition and reformation to produce H₃ and syngas, respectively
- Requires no external energy as the heat for the methane decomposition/ reformation process is supplied by the methane CLC process, making the coupled CLC-methane decomposition/reformation processes highly cost and energy efficient
- Produces a H₂ or syngas stream undiluted by nitrogen, thereby avoiding additional processing steps and associated costs

Applications:

Any application that involves the conversion of methane to $\rm H_2$ or synthesis gas. The resulting gasses can be used as feedstocks for conversion to commercial products such as methanol, ammonia, dimethyl ether, and liquid fuels.

Related Patents and Patent Applications:

- U.S. Provisional Patent Application No. 62/265,677 filed December 20, 2015, titled "Production of Pure Hydrogen and Synthesis Gas with Cu-Fe Oxygen Carriers Using Combined Processes of Chemical Looping Combustion and Methane Decomposition/Reforming." Inventors: Ranjani Siriwardane and Hanjing Tian
- U.S. Non-Provisional Patent Application No. 13/159,553 filed June 14, 2011, titled "Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process." Approved by U.S. patent office, 2016. Inventors: Ranjani Siriwardane and Hanjing Tian.

1450 Queen Avenue SW Albany, OR 97321-2198 541-967-5892

3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4764

626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-4687

For more information:

Jessica Sosenko Technology Transfer Manager jessica.sosenko@netl.doe.gov 412-386-7417

Visit the NETL website at: **www.netl.doe.gov**

Customer Service: **1-800-553-7681**

